CHAPTER 1

INTRODUCTION TO STRUCTURED PROGRAMMING

Programming means to convert problem solutions into instruditor the computer. It also refers
to the process of developing and implementing wergets of instructions to enable a computer to
do a certain task.

Structured programming (sometimes known amodular programminyis an approach to writing
programs that are easier to test, debug, modifynaaidtain by enforcing a modular approach
which breaks a large complex problem into sub-pnaisl.

A programming language is a vocabulary and setarhgnatical rules designed for instructing a
computer to perform specific tasks.

HISTORY OF PROGRAMMING LANGUAGES

First-Generation Programming Languages — Machine Laguage

A first-generation of programming languages chmimchlh@]’evelprogrammlng languages.
These languages were introduced in the 1940s anmlgeidlowmg characteristics:

« Instructions were entered directly in blna{Morr(fm and 0s) and therefore they were
tedious and error prone. Programmers.hiad to déisaincode by hand then transfer it to a
computer using a punch card, puncr(t}ape or flickingches.

« Instructions were executed dlrec;b&a?y a computsgtgral processing unit (CPU) i.e. they
were executed very fast.

- Memory management was ddné manually.

- Programs were very dlfflcqmo edit and debug.

« Used to code simple prdgrams only.

Second-Generation Programming Languages (2GL) — Lowevel Programming
Languages/Assembly Languages

They were introduced to mitigate the error prong @xcessively difficult nature of binary
programming.

* Introduced in the 1950s

* Improved on first generation by providing humandeg@lesourcecodewhich must be
compiled/assembled into machine code (binary iottns) before it can be executed by
aCPU

» Specific to platform architecture i.e. 2GL sourcele isnot portable across processors
or processing environments.

» Designed to support logical structure and debugging

By using codes resembling English, programming bexsomuch easier. The use of these
mnemonic codesuch a4 DA for load andSTA for store means the code is easier to read and write.
To convert an assembly code program into objece ¢odun on a computer requiresAssembler

and each line of assembly can be replaced by thieagnt one line of object (machine) code:

6

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

KEVOH
Highlight

Assembly Code Machine Code

LDA A 000100110100
ADD #5 > Assembler 201000000101
STAA 001100110100
UNEES 010000000011

Such languages are sometimes still usettdonelsanddevice driversi.e. the core of the operating
system and for specific machine parts. More oféeich languages are used in areas of intense
processing, likgraphics programmingwhen the code needs todyetimized for performance.

Almost every CPU architecture has a companion asiselanguage. Most commonly used are the
assembly languages today like Autocoder for IBMnfraime systems, Linoreum, MACRO -11,etc.

Third-Generation Languages (3GL) — High-Level Langages

Third generation languages are the primary langsiaged in general purpose programming today.
They each vary quite widely in terms of their partar abstractions and syntax. However, they all
share great enhancements in logical structure as@mbly languages.

« Introduced in the 1950s N
- Designed around ease of use for the program@ggr(ﬂmner friendly)
- Driven by desire for reduction bugs,increaﬁesqnode reuse

- Based on natural language X
- Often designed with structured progr ding'in'mind
- The languages are architecture ind dentC, Java etc.
&
Examples: \ &

&« ¢
™

Most Modern General Purpose l;ajgih;guages such as €,@# Java, Basic, COBOL, Lisp and ML.

Fourth Generation Languages

Fourth-generation programming languages are higél-languages built around database systems.
They are generally used in commercial environments.
* Improves on 3GL and their development methods higher abstraction andstatement
power, to reduce errors and increase development speestibcing programming
effort. They result in a reduction in the cost oftware development.
A 4GL is designed with apecific purposein mind. For example languages to query
database6SQL), languages to make reports (Oracle Reports) etc.
* A4GL are more oriented towards problem solving arstiesns engineering.

Examples: Progress 4GL, PL/SQL, Oracle ReportspRé&en language, SAS, SPSS, SQ
Fifth Generation Languages

Improves on the previous generations by skippiggréhm writing and instead provide
constraints/conditions

While 4GL are designed to build specific prograb(SL are designed to make the computer solve a

i

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

karix
Highlight

KEVOH
Highlight

given problem without the programmer. The programomdy needs to worry abouthat
problems needed to be solved and only inputs a s#tlogical constraints with no specified
algorithm, and thdtrtificial Intelligence (Al)-based compiler builds the program based on
these constraints

Examples: Prolog, OPS5, Mercury

Low-Level Languages Versudligh-Level Languages

Low-level languagessuch asnachine languageandassembly languagere closer to the

hardware than are the high-level programming laggsawhich are closer to human languages.
Low-level languages are converted to machine catleut using a compiler or interpreter, and the
resulting code runs directly on the processor. dgpam written in a low-level language rurexy
quickly, and with avery small memory footprint; an equivalent program in a high-level language
will be more heavyweight. Low-level languages siraple, but are consideretifficult to use, due

to the numerous technical details which must beerebrered.

High-level languagesare closer to human languages and further fromhimadanguages.

The main advantage of high-level languages overléwsl languages is that they aasier to
read, write, and maintain. Ultimately, programs written in a/igh-level larse must be
translated into machine language by a compilente!r}i)retgl’.\{~ 2

~\J
The first high-level programming languages werdg;lgﬁt;in the 1950s. Now there are dozens of
different languages, including Ada, Algol, BASIC@BOL, C, C++, FORTRAN, LISP, Pascal,

and Prolog. <\.z

/

PROGRAMMING PARADIGI\/{&

A programming paradigm is a funda\(gé?ital style ehpater programming, a way of building the
structure and elements of compqggi‘programs. Tareréour main paradigms:

a) Unstructured Programming

In unstructured programs, the statements are ea@@uisequence (one after the other) as written.
This type of programming uses the GoTo statemeithwddlows control to be passed to any other
section in the program. When a GoTo statementasugrd, the sequence continues from the target
of the GoTo. Thus, to understand how a program sjoréu have to execute it. This often makes it
difficult to understand the logic of such a program

b) Structured Programming

The approach was developed as a solution to tHeenbas posed by unstructured/procedural
programming. Structured programming frequently eyplatop-down design modelin which
developerdreak the overall program structure inteseparate subsectionsA defined function or
set of similar functions is coded in a separateutedr sub-module, which means tkatle can be
loaded into memory more efficientlyand thaimodules can be reused in other programsAfter

a module has been tested individually, it is th@agrated with other modules into the overall
program structure.

KEVOH
Highlight

Program flow follows a simple hierarchical modettemploys looping constructs such as "for,"
"repeat,” and "while." Use of the "GoTo" statemisndiscouraged.

Most programs will require thousands or milliondinés of code. (Windows 2000 — over 35
millions lines of code). The importance of spli¢fia problem into a series of self-contained
modules then becomes obvious. A module shouldxusesl 100 lines, and preferably short enough
to fit on a single page or screen.

Examples of structured programming languages irclud

C

Pascal

Fortran

Cobol

ALGOL

Ada

dBASE etc.

VVYVVVYVYYY

c) Object-oriented programming (OOP)

This is a programming paradigm that representsequs@as "objects" that have data fields
(attributes that describe the object) and assatiatecedures known as methods. Objects, which
are usually instances of classes, are used t@attetith one another to design applications and
computer programs. .

d) Visual Programming O
A visual programming language uses a visual reptgg'%ﬁ (such as graphics, drawings, animation
or icons, partially or completely). A visual langgarffahipulates visual information or supports
visual interaction, or allows programming with $dexpressions
N\

~\J)
A VPL allows programming with visual expressionsasal arrangements of text and graphic
symbols, used either as elements of syntax or secgmotation. For example, many VPLs (known
as dataflow or diagrammatic prografiiming) are basethe idea of "boxes and arrows", where
boxes or other screen objects a Yreated asesntidnnected by arrows, lines or arcs which
represent relations. An example®of visual prograngninguages is Microsoft Visual Basic which
was derived from BASIC and enables the rapid apptia development (RAD) of graphical user
interface (GUI) applications.
Programming in VB is a combination of visually arggng components or controls on a form,
specifying attributes and actions for those compts)eand writing additional lines of code for
more functionality.

e) Internet Based Programming

This is programming oriented to the developmenttarnet applications using languages and tools
such as PHP, ASP, Perl, JavaScript, HTML, Java etc.

SOFTWARE CONSIDERATIONS

Before you can start programming in C, you will ehéext editor such as a plain text Notepad
Editor though it does not offer code completiordebugging. Many programmers prefer and
recommend using an Integrated Development EnviromifhBE) instead of a text editor on which
to code, compile and test their programs.

Memory requirements

KEVOH
Highlight

Disk space required

ADVANTAGES C LANGUAGE

1. Modularity: modularity is one of the important characteristics of C. we can split the
C program into no. of modules instead of repeating the same logic statements
(sequentially). It allows reusability of modules.

2. General purpose programming language: C can be used to implement any kind of
applications such as math’s oriented, graphics, business oriented applications.

3. Portability: we can compile or execute C program in any operating system (UNIX,
dos, windows).

4. Powerful and efficient programming language: C is very efficient and powerful
programming language; it is best used for data structures and designing system
software. Efficient in that it is a modular programming language and thus makes
efficient use of memory and system resources.

7N

10

KEVOH
Highlight

