CHAPTER 7

FILE HANDLING

This chapter explains how C programmers can creggn and close text or binary files
for their data storage.A file represents a sequehbgtes, does not matter if it is a text
file or binary file.

OPENING FILES

You can use th#open() function to create a new file or to open an ergsfile, this call
will initialize an object of the typ€ILE , which contains all the information necessary to
control the stream. Following is the prototypetostfunction call:

FILE *fopen(const char * filename, const char * mo de);

Here,filename s string literal, which you will use to r\%@e ydile and accessode
can have one of the following values: ”&,

Mode Des%}fc)n

r Opens an existing text file for readi urpose.

W Opens a text file for writing, if itb\@s not exteen a new file is created. Here
your program will start writin tent from thedening of the file.
Opens a text file for wrltlng‘ﬁrappendlng modet floes not exist then a new file

a is created. Here your pr@‘@?am will start appendiogtent in the existing file
content. R

Q\X

r+ Opens a text file for?’eadmg and writing both.

Opens a text file for reading and writing botHfirgt truncate the file to zero
length if it exists otherwise create the file ifides not exist.

Opens a text file for reading and writing bothcriéates the file if it does not exist.
The reading will start from the beginning but wrgican only be appended.

W+

at

If you are going to handle binary files then youl wse below mentioned access modes
instead of the above mentioned:

T, "wb", "ab", "ab+", "a+h", "Wh+", "W+b", "ab+" "a+b”
CLOSING A FILE

To close a file, use the fclose() function. Thetptype of this function is:

int fclose(FILE *fp);

77

KEVOH
Highlight

Thefclose()function returns zero on successE@F if there is an error in closing the
file. This function actually, flushes any datalgignding in the buffer to the file, closes
the file, and releases any memory used for theTie EOF is a constant defined in the
header filestdio.h.

There are various functions provide by C standi@rdny to read and write a file
character by character or in the form of a fixewté string. Let us see few of the in the
next section.

WRITING A FILE

Following is the simplest function to write individl characters to a stream:

int fputc(int ¢, FILE *fp);

The functionfputc() writes the character value of the argument cecothtput stream

referenced by fp. It returns the written charaetetten on success otherwiEOF if
there is an error. You can use the following fumresi to write a null-terminated string to

a stream: \3\&}
int fputs(const char *s, FILE *fp); (; g
vy
Ve X4
The functionfputs() writes the string to the/q&tput stream referenced by fp. It ret@ns
non-negative value on success, othenli®&-is returned in case of any error. You can

useint fprintf(FILE *fp,const char *for@af, ...) function as well to write a string into a
file. Try the following example: {7

A -
t\“ "
#include <stdio.h> ON*
t‘“
N

main() N\

{

FILE *fp;

fp = fopen("/tmp/test.txt”, "w+");
fprintf(fp, "This is testing for fprintf...\n");
fputs("This is testing for fputs...\n", fp);
fclose(fp);

}

When the above code is compiled and executedgdttes a new fileest.txt in /tmp
directory and writes two lines using two differdéanctions. Let us read this file in next
section.

READING A FILE

Following is the simplest function to read a singfaracter from a file:

int fgetc(FILE * fp);

78

KEVOH
Highlight

Thefgetc() function reads a character from the input filerehced by fp. The return
value is the character read, or in case of any érreturnsEOF. The following
functions allow you to read a string from a stream:

char *fgets(char *buf, int n, FILE *fp);

The functiondgets() reads up to n - 1 characters from the input stnederenced by fp.
It copies the read string into the buffarf, appending aull character to terminate the
string.

If this function encounters a newline charactérdkrthe end of the file EOF before they
have read the maximum number of characters, thretuitns only the characters read up
to that point including new line character. You @so usent fscanf(FILE *fp, const
char *format, ...) function to read strings from a file but it stapsading after the first
space character encounters.

#include <stdio.h>

main() %
{ \}\.m
FILE *fp; O
char buff[255]; VU
fp = fopen("/tmp/test.txt", "r"); X
fscanf(fp, "%s", buff); O
printf("1 : %s\n", buff); N

fgets(buff, 255, (FILE*)fp): /\\\
printf("2: %s\n", buff); N

fgets(buff, 255, (FILE®)fp); &
printf("3: %s\n", buff); R\
fclose(fp); ;

}

When the above code is compiled and executedadsréhe file created in previous
section and produces the following result:

1: This
2: is testing for fprintf...

3: This is testing for fputs...
Let's see a little more detail about what happérezd. Firsfscanf() method read just
This because after that it encountered a space, seadind forfgets() which read the

remaining line till it encountered end of line. &lly last callfgets()read second line
completely.

BINARY I/O FUNCTIONS

79

KEVOH
Highlight

