
CHAPTER 7: CONSTRUCTORS AND 

DESTRUCTORS 
Definition of Constructors 
Constructors are special class functions which performs initialization of every object. 

The Compiler calls the Constructor whenever an object is created. Constructors iitialize 

values to object members after storage is allocated to the object 

class A 

{ 

int x; 

public: 

A(); //Constructor 

       }; 

While defining a contructor you must remeber that the name of constructor will be 

same as the name of the class, and contructors never have return type. 

 

Constructors can be defined either inside the class definition or outside class definition 

using class name and scope resolution‖::‖ operator. 

class A 

{ 

int i; 

public: 

A(); //Constructor declared 

}; 

A::A() // Constructor definition 

{ 

i=1; 

} 

 

Types of Constructors 
Constructors are of three types : 

1. Default Constructor 

2. Parametrized Constructor 

3. Copy Constructor 
 

Default Constructor 

Default constructor is the constructor which doesn't take any argument. It has no 

parameter. 

Syntax : 

class_name ()  

{ Constructor Definition } 

 



Example : 

class Cube 

{ 

int side; 

public: 

Cube() 

{  

side=10; 

} 

}; 

int main() 

{ 

Cube c; 

cout << c.side; 

} 

 

Output : 10 

 

In this case, as soon as the object is created the constructor is called which initializes its 

data members. 

 

A default constructor is so important for initialization of object members, that even if 

we do not define a constructor explicitly, the compiler will provide a default 

constructor implicitly. 

 

class Cube 

{ 

int side; 

}; 

int main() 

{ 

Cube c; 

cout << c.side; 

        } 

 

Output : 0 

In this case, default constructor provided by the compiler will be called which will 

initialize the object data members to default value, that will be 0 in this case. 

 

Parameterized Constructor 

These are the constructors with parameter. Using this Constructor you can provide 

different values to data members of different objects, by passing the appropriate values 

as argument. 



Example : 

class Cube 

{ 

int side; 

public: 

Cube(int x) 

{  

side=x; 

} 

}; 

int main() 

{ 

Cube c1(10); 

Cube c2(20); 

Cube c3(30); 

cout << c1.side; 

cout << c2.side; 

cout << c3.side; 

} 

OUTPUT : 10 20 30 

 

By using parameterized construcor in above case, we have initialized 3 objects with 

user defined values. We can have any number of parameters in a constructor. 

 

 Copy Constructor 

These are special type of Constructors which takes an object as argument, and is used 

to copy values of data members of one object into other object. We will study copy 

constructors in detail later. 

 

Constructor Overloading 
Just like other member functions, constructors can also be overloaded. Infact when you 

have both default and parameterized constructors defined in your class you are having 

Overloaded Constructors, one with no parameter and other with parameter. 

 

You can have any number of Constructors in a class that differ in parameter list 

class Student 

{ 

int rollno; 

string name; 

public: 

Student(int x) 

{ 



rollno=x; 

name="None"; 

} 

Student(int x, string str) 

{ 

rollno=x ; 

name=str ; 

} 

}; 

int main() 

{ 

Student A(10); 

Student B(11,"Ram"); 

                 } 

In above case we have defined two constructors with different parameters, hence 

overloading the constructors.  

 

One more important thing, if you define any constructor explicitly, then the compiler 

will not provide default constructor and you will have to define it yourself. 

 

In the above case if we write  Student S;  in main(), it will lead to a compile time 

error, because we haven't defined default constructor, and compiler will not provide its 

default constructor because we have defined other parameterized constructors. 

 

Destructors 
Destructor is a special class function which destroys the object as soon as the scope of 

object ends. The destructor is called automatically by the compiler when the object 

goes out of scope. 

The syntax for destructor is same as that for the constructor, the class name is used for 

the name of destructor, with a tilde ~ sign as prefix to it. 

class A 

{ 

public: 

~A(); 

}; 

Destructors will never have any arguments. 

 

Example to see how Constructor and Destructor is called  

class A 

{ 

     A() 

{ 



      cout << "Constructor called"; 

} 

  ~A() 

{ 

     cout << "Destructor called"; 

} 

}; 

int main() 

{ 

A obj1; // Constructor Called 

int x=1 

if(x) 

     { 

         A obj2; // Constructor Called 

     } // Destructor Called for obj2 

} // Destructor called for obj1 

 

Implementation of constructors and Destructors 
Single Definition for both Default and Parameterized Constructor 

In this example we will use default argument to have a single definition for both 

defualt and parameterized constructor. 

 

class Dual 

{ 

int a; 

public: 

Dual(int x=0) 

      { 

          a=x; 

      } 

}; 

int main() 

{ 

Dual obj1; 

Dual obj2(10); 

} 

Here, in this program, a single Constructor definition will take care for both these 

object initializations. We don't need separate default and parameterized constructors. 

 


