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PART I 
1.1 Introduction to Fuzzy Logic 
Fuzzy logic studies reasoning systems in which the notions of truth and falsehood are considered 

in a graded fashion, in contrast with classical mathematics where only absolutely true statements 

are considered 

1:1:1 Fuzzy logic in broad sense 
Fuzzy logic in broad sense serves mainly as apparatus for fuzzy control, analysis of vagueness in 

natural language and several other application domains. 

It is one of the techniques of soft-computing, i.e. computational methods tolerant to sub 

optimality and impreciseness (vagueness) and giving quick, simple and sufficiently good 

solutions. 

1:1:2 Fuzzy logic in the narrow sense 
Fuzzy logic in the narrow sense is symbolic logic with a comparative notion of truth developed 

fully in the spirit of classical logic (syntax, semantics, axiomatization, truth-preserving deduction, 

completeness, etc.; both propositional and predicate logic).  

It is a branch of many-valued logic based on the paradigm of inference under vagueness. 

1.2 Fuzzy sets and crisp sets 
In classical mathematics one deals with collections of objects called (crisp) sets. 

Sometimes it is convenient to fix some universe U in which every set is assumed to be included. 

It is also useful to think of a set A as a function from U which takes value 1 on objects which 

belong to A and 0 on all the rest. Such functions is called the characteristic function of A, XA: 

 
So there exists a objective correspondence between characteristic functions and sets. 
 

1.2.1 Crisp sets 
Example 
Let X be the set of all real numbers between 0 and 10 and let A = [5; 9] be the subset of X of 
real numbers between 5 and 9. This results in the following figure: 
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1.2.2 Fuzzy sets 
Fuzzy sets generalize this definition, allowing elements to belong to a given set with a certain 
degree. 
Instead of considering characteristic functions with value in f0; 1g we consider now functions 
valued in [0; 1]. 
A fuzzy subset F of a set X is a function _F (x) assigning to every element x of X the degree of 
membership of x to F: 
 

 
Let, as above, X be the set of real numbers between 1 and 10. A description of 
the fuzzy set of real numbers close to 7 could be given by the following figure: 
 
 

 

 

 

1:3 Operations between sets 
In classical set theory there are some basic operations defined over sets. Let X 
be a set and P(X ) be the set of all subsets of X or, equivalently, the set of all 
functions between X and {0, 1}. The operation of union, intersection and 
complement are defined in the following ways: 
A ∪ B = {x | x ∈ A or x ∈ B} i.e. χA∪B (x) = max{χA(x), χB (x)} 

A ∩ B = {x | x ∈ A and x ∈ B} i.e. χA∩B (x) = min{χA(x), χB(x)} 

A = {x | x ∈ A} i.e. χA (x) = 1 - 
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χA(x) 

 

1:3:1 Operations between fuzzy sets: union 
The law 

χA∪B (x) = max{χA(x), χB (x)}. 

gives us an obvious way to generalise union to fuzzy sets. 
Let F and S be fuzzy subsets of X given by membership 
functions µF and µS : 

 

 

 

 

 

 

We set 
µF ∪S (x) = max{µF (x), µS (x)} 

 

 

 

 

 

 

1:3:2 Operations between fuzzy sets: intersection 
Analogously for intersection: 

χA∩B (x) = min{χA(x), χB(x)}. 

 

 

We set 
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µF ∩S (x) = min{µF (x), µS (x)} 

 

 

 

 

 

 

1:3:3 Operations between fuzzy sets: complement 
Finally the complement for characteristic functions is defined 
by, 

χA (x) = 1 - χA(x). 

 

 

We set 
µF (x) = 1 - µF (x). 

 

 

 

 

 

 

1:3:4 Operations between fuzzy sets 2 
Let’s go back for a while to operations between sets and focus on intersection. 
We defined operations between sets inspired by the operations on characteristic 
functions. Since characteristic functions take values over {0, 1} we had to choose 
an extension to the full set [0, 1]. 
It should be noted, though, that also the product would do the job, since on 
{0, 1} they coincide: 
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χA∩B (x) = min{χA(x), χB (x)} = χA(x) · χB (x). 

 

So our choice for the interpretation of the intersection between fuzzy sets was a 
little illegitimate. 
Further we have 
 

χA∩B (x) = min{χA(x), χB(x)} = max{0, χA(x) + χB (x) - 1} 
 

It turns out that there is an infinity of functions which have the same values as 
the minimum on the set {0, 1}. This leads to isolate some basic property that 
the our functions must enjoy in order to be good candidate to interpret the 
intersection between fuzzy sets. 

 

1.4  t-norms 
In order to single out these properties we look again back at the crisp case: It is 
quite reasonable for instance to require the fuzzy intersection to be 
commutative, i.e. 

µF (x) ∩ µS (x) = µS (x) ∩ µF (x), 

or associative: 

µF (x) ∩ [µS (x) ∩ µT (x)] = [µF (x) ∩ µS (x)] ∩ µT (x). 

 
Finally it is natural to ask that if we take a set µF bigger than 

µS than the intersection µF ∩ µT should be bigger or equal than 
µS ∩ µT : 

If for all x ∈ XµF (x) ≥ µS (x) then µF (x)∩µT (x) ≥ µS (x)∩µT (x) 

 
Summing up the few basic requirements that we make on a function � that 
candidates to interpret intersection are:To extend the {0, 1} case, i.e. for all x ∈ 
[0, 1]. 

1 � x = x and 0 � x = 0 

Commutativity, i.e., for all x, y, z ∈ [0, 1], 

x � y = y � x 
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Associativity, i.e., for all x, y, z ∈ [0, 1], 

(x � y ) � z = x � (y � z), 

To be non-decreasing, i.e., for all x1 , x2 , y ∈ [0, 1], 

x1 ≤ x2 implies x1 � y ≤ x2 � y. 

 
 

Objects with such properties are already known in mathematics and are 

called t-norms. 

Example 
(i) Lukasiewicz t-norm: x  y = max(0, x + y - 1). 

(ii) Product t-norm: x · y usual product between real numbers. 

(iii) Gödel t-norm: x ∧ y = min(x, y). 

if (x, y) ∈ [0, 1[2 
otherwise. 

(v) The family of Frank t-norms is given by: 
 

if λ = 0 
if λ = 1 
if λ = ∞ 

otherwise 
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Examples 

 

 

 

 
1 

Y 

 

 

 

 

X 

1 

Lukasiewicz                               Product                           Minimum 

 

1:5 Mostert and Shields’ Theorem 
An element x ∈ [0, 1] is idempotent with respect to a t-norm 

�, if x � x = x. 
For each continuous t-norm �, the set E of all idempotents is a closed subset of 
[0, 1] and hence its complement is a union of a 
set Iopen(E) of countably many non-overlapping open intervals. 

Let [a, b] ∈ I (E) if and only if (a, b) ∈ Iopen(E). For I ∈ I (E) 
let �|I the restriction of � to I 2 . 

Theorem (Mostert and Shields, ’57) 

If �, E, I(E) are as above, then 

(i) for each I ∈ I (E), �|I is isomorphic either to the Product 
t-norm or to Lukasiewicz t-norm. 

(ii) If x, y ∈ [0, 1] are such that there is no I ∈ I (E) with 
x, y ∈ I , then x � y = min(x, y). 
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Examples 

 

 

 

 
1 

0.75 

0.5 

0.25 

0 

0 

0.2 

0.4 

0.6 

0.8 

1 0 

Two copies of Lukasiewicz                                     Lukasiewicz plus Product 

Summary 

We have seen that it is possible to generalise the classic crisp sets to objects 
which naturally admits a notion of graded membership. Also the 
fundamental operations between sets can be generalised to act on those new 
objects....but there is not just one of such generalisations. 
A few natural requirements drove us to isolate the concept of t-norm as a 
good candidate for intersection. There is a plenty of t-norms to choose from, 
but all of them can be reduced to a combination of three basic t-norms. next 
aim: we have fuzzy properties and we can combine them, let us try to reason 
about them. 
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Part II 
Mathematical logic 

 

2:1 What is a logic? 
In mathematics a logic is a formal system which describes somen set of rules 
for building new ob jects form existing ones. 

Example 
Given the two words ab and bc is it possible to build new ones by substituting 
any b with ac or by substituting any c  with a. So the words aac, aaa, acc, aca, .. are 
deducible from the two given ones. The rules of chess allow to build new 
configurations of the pieces on the board starting from the initial one. The 
positions that we occupy in the space are governed by the law of physics. 
 
 

2:2 Propositional logic 
Propositional logic studies the way new sentences are derived from a set of 
given sentences (usually called axioms). 

 
Example 

 

If there is no fuel the car does not start. 

There is no fuel in this car. 

This car will not start. 

 

If you own a boat you can travel in the see. 

If you can travel in the see you can reach Elba island. 

If you own a boat you can reach Elba island. 
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2:3 SYNTAX 
Proportional Logic 

Definition 
The objects in propositional logic are sentences, built from a alphabet. 
The language of propositional logic is given by: 

A set V of propositional variables (the alphabet): 
{X1 , . . . , Xn, . . .} 

Connectives: ∨, ∧, ¬, → (conjunction, disjunction, negation and implication). 
Parenthesis ( and ). 
 

2:3:1 Sentences of propositional calculus 
Definition 

Sentences (or formulas) of propositional logic are defined in the 
following way. 

i) Every variable is a formula. 

ii) If P and Q are formulas then (P ∨ Q), (P ∧ Q), (¬P ), 
(P → Q) are formulas. 

iii) All formulas are constructed only using i) and ii). 
 

Parenthesis are used in order to avoid confusion. They can be 
omitted whenever there is no risk of misunderstandings. 

 

2:3:2 The axioms of propositional logic 

 

The axioms of propositional logic are : 

1. (A → (B → A)) 

2. ((A → (B → C )) → ((A → B) → (A → C ))) 

3. ((¬A → ¬B) → (B → A)) 

plus modus ponens: if A → B is true and A is true, then B is true. 
A deduction is a sequence of instances of the above axioms  and use of 

the rule modus ponens. The other connectives are 
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defined as 

A ∨ B =def ¬A → B 

A ∧ B =def ¬(¬A ∨ ¬B) = ¬(¬¬A → ¬B) 
 

2:3:3 A deduction in propositional logic 
Example 

An instance of 1 gives 
 

¬X1 → (X2 → ¬X1 ) 
 

and an instance of 2 gives 
 

¬X1 → (X2 → ¬X1 ) → ((¬X1 → X2 ) → (¬X1 → ¬X1 )), 
 

the use of modus ponens leads 
 

(¬X1 → X2 ) → (¬X1 → ¬X1 ) 
 

which, by definition, can be written as 
 

(¬X1 → X2 ) → (X1 ∨ ¬X1 ). 
 
 

2:4 The semantics of a calculus 
Just as happens in mathematics, where one makes calculations with numbers 

and those numbers represent, e.g. physical quantities, or amount of money, or 

points in a space, one can associate to a logic one (or several) interpretation, 

called the semantics of the logic. 
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Evaluations 

Definition 
An evaluation of propositional variables is a function 
 

v : V → {0, 1} 
 

mapping every variable in either the value 0 (False) or 1 (True). In order to 
extend evaluations to formulas we need to interpret connectives as operations 
over {0, 1}. In this way we establish a homomorphism between the algebra of 
formulas (with the operation given by connectives) and the Boolean algebra on 
{0, 1}: 

 

v : F orm → {0, 1} 
 

2:4:1 The semantics of connectives 
The evaluation v can be extended to a function v total on 
F orm by using induction: 

Variables: v(X1 ) = v(X1 ), . . . , v(Xn) = v(Xn). 

v(P ∧ Q) = 1 if both v(P ) = 1 and v(Q) = 1. 
v(P ∧ Q) = 0 otherwise. 

v(P ∨ Q) = 1 if either v(P ) = 1 or v(Q) = 1. 
v(P ∨ Q) = 0 otherwise. 

v(P → Q) = 0 if v(P ) = 1 and v(Q) = 0. 
v(P → Q) = 1 otherwise. 

v(¬P ) = 1 if v(P ) = 0, and vice-versa. 

A formula is a tautology if it only takes values 1. Tautologies are always true, 
for every valuation of variables. 
 

2:4:2 Truth tables 

 

The above rules can be summarized by the following tables: 

A B A ∧ B A B A ∨ B A B A → B 
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1 1 1 1 1 1 1 1 1 A 
¬A 

1 0 0 1 0 1 1 0 0 1 
0 

0 1 0 0 1 1 0 1 1 0 
1 

0 0 0 0 0 0 0 0 1 

 

Conjunction Disjunction Implication Negation 

 

 

 

Using the tables for basic connectives we can write tables for any formula: 

Example 

Let us consider the formula X → (Y ∨ ¬X ): 

 

X Y ¬X Y ∨ ¬X X → (Y ∨ ¬X ) 
1 1 0 1 1 
1 0 0 0 0 
0 1 1 1 1 
0 0 1 1 1 

 

2:5 Multiple truth values 

2:5:1 Adding a third truth values 
It is easy now to figure out how to extend the previous logical apparatus with a 
third truth value, say 1/2. We keep the same syntactical structure of formulas: 
we just change the semantics. Evaluations are now functions from the set of 
variables into {0, 1/2, 1}. 
Accordingly to the definitions of truth tables for connectives we have different 
three-valued logics. 
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2:5:2 Kleene’s logic 
Kleene strong three valued logic is defined as 

 

A and B 0 1/2 1 A or B 0 1/2 1 
0 0 0 0 0 0 1/2 1 

1/2 0 1/2 1/2 1/2 1/2 1/2 1 
1 0 1/2 1 1 1 1 1 

Conjunction Disjunction 

 

A implies B 0 1/2 1 A not A 
0 1 1 1 1 0 

1/2 1/2 1/2 1 1/2 1/2 
1 0 1/2 1 0 1 

Implication Negation 

 

 
 

2:5:3 Lukasiewicz three valued logic 
Lukasiewicz three valued logic is given by the following 
stipulation: 

A  B 0 1/2 1 A � B 0 1/2 1 
0 0 0 0 0 0 1/2 1 

1/2 0 0 1/2 1/2 1/2 1 1 
1 0 1/2 1 1 1 1 1 

Conjunction Disjunction 

 

A → B 0 1/2 1 A ¬A 
0 1 1 1 1 0 

1/2 1/2 1 1 1/2 1/2 
1 0 1/2 1 0 1 

Implication Negation 

We can also consider more than three values, and also infinitely many values, for 
example interpreting formulas in the real interval [0, 1]. 
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2:6 t-norms in logic 

 

 

Here come back the t-norm functions defined earlier. Indeed 
one can think t-norms as possible semantics for the connective 
“conjunction”. 

To rescue an implication from the t-norm, one can ask for 
desirable properties which relate the two connectives; a very 
important one is 

 

(A ∧ B) → C A → (B → C ). 

 

2:7 The Other Connectives 
 

2:7:1 Residuum 

 

Proposition 

Let � be a continuous t-norm. Then, for every x, y, z ∈ [0, 1], 
there is a unique operation satisfying the property: 

 

(x � z) ≤ y if and ony if z ≤ (x ⇒ y ) 
 

and it is defined by 
 

x ⇒ y = max{z | x � z ≤ y} 

 

The operation ⇒ is called the residuum of the t-norm �. 

Example 

�=
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The following are residua of the three main continuous t-norms: 

 

T-norm Residuum 

L x �L y = max(x + y - 1, 0) x →L y = min(1, 1 - x + y ) 

P x �P y = x · y  

 

G x �G y = min(x, y)

w
w
w
.m

as
om

om
si
ng

i.c
om



| 20  
 

 
 

2:7:2 Negation 
Once we have implication we can also define negation. 
Indeed in classical logic a formula that implies a false formula is 
false itself. Hence 

¬A = A → 0. 

 

 

In case of Lukasiewicz t-norm, we have 

¬x = x → 0 = min(1, 1 - x + 0) = 1 - x 

 

 

For Gödel and Product logic 

 

¬x = 
 

2:7:3 The complete picture 

 

Completing the table 

T-norm x � y 

L max(x + y - 1, 0) min(1, 1 - x + y ) 1 - x 

P x · y 

 

G min(x, y) 

 

So each of these logics is specified only by the t-norm. 

Residuum x ⇒y Negation ¬x 

 

1 if x ≤ y 1 if x = 0 
y/x otherwise 0 ow 
1 if x ≤ y 1 if x = 0 
y otherwise 0 ow
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2:7:4 Implication 

 

We have seen that logical systems can be approached in two 
different ways: 

Specifying the syntax, that means fixing axioms and 
deduction rules 

Specifying the semantics, that means fixing the 
interpretation of formulas. 

In the first approach the connective of implication plays a very 
important role, since it is the main ingredient of the basic 
deduction rule of Modus ponens: 

If A and A → B are theorems, then B is a theorem. 

 

 

Implication 

 

On the other hand, the implication can be defined as an 
operation between sets by 

 

A → B = ¬A ∪ B. 
 

 

This means that if A and B are subsets of X , then A → B = X 
if and only if A ⊆ B that is equivalent to say that 
χA(x) ≤ χB (x). 

Going to the fuzzy level, implication takes care of order 
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between membership values. 

Later, we shall come back to implication in fuzzy logic. 

 
 

Summary 

We have seen that it is possible to formalise inside mathematics what a logical system is. 
Logical systems can be presented syntactically by specifying axioms and rules or 
semantically by giving devising the truth tables of the connectives. Just as happens in 
classical logic, where the concept of intersection corresponds to the connective hand, we have 
seen that t-norms can be used as generalised truth tables for conjunction. 
Clearly one can build any logical system whatsoever, but in order to obtain good deductive 
properties it is important to relate in some way the connectives next aim: we wish now to 
push these methods to infinite values and show that syntax and semantic can be reunified back. 
 

 

 

 

 

 

 

 PART III 
3:1 Introduction to Pattern Recognition 

 Pattern recognition is the discipline of building machines to perform perceptual 

tasks which we humans are particularly good at. e.g. recognize faces, voice, identify 

species of flowers, spot an approaching storm.  
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There are practical needs to find more efficient ways of doing things. e.g. read 

hand-written symbols, diagnose diseases, identify incoming missiles from radar or 

sonar signals. The machines may perform these tasks faster, more accurately and 

cheaply. 

The goal of pattern recognition research is to clarify complicated mechanisms 

of decision making processes and automatic these function using computers. 

3:2 Pattern classification 
Although we humans can perform some of the perceptual tasks with ease, there 

is not sufficient understanding to duplicate the performance with a computer. 

Because the complex nature of the problems, many pattern recognition research 

has b een concerned with more moderate problems of 

pattern classification — the assignment of a physical object or event to one of 

several pre- specified categories. 

Example: A lumber mill producing assorted hardwoods wants to automate the 

process of sorting finished lumber according to the species of trees. 

Optical sensing is used to distinguish birch lumber from ash lumber. A camera takes 

a pictures of the lumber and passes to on to a feature extractor. 

 

 

decision 

classifier 

  Figure: A pattern classification system 

The feature extractor reduces the data by measuring certain “properties” that distinguish 

pictures of birch lumber from pictures of ash lumber. These features are then 

lumbe
r transduce feature 

extractor
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passed to a classifier that evaluates the evidence presented and makes a final 

decision about the lumber type. 

 

Suppose that somebody at the lumber mill tells us that birth is often 

lighter colored than ash. Then brightness becomes an obvious feature. We might 

attempt to classify the lumber merely by seeing whether or not the average 

brightness X exceeds some critical value. 

One characteristic of human pattern recognition is that it involves a teacher. 

Similarly a machine pattern recognition system needs to be trained. A common 

mode of learning is to be given a collection of labeled examples, known as 

training data set. From the training data set, structure information is distilled and 

used for classifying new inputs. 

In this case, we would obtain samples of different types of wood, make 

brightness measurements, and inspect the results. Suppose that we obtain the 

following histogram based on these data samples. 

 

 

 

 

 

 

 

 

 

Figure: Histogram for the brightness feature. 

The histogram bears out the statement that birch is usually lighter than ash, but 
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it is clear that this single criterion is not infallible. No matter how we choose X0, 

we cannot reliably separate birch from ash by brightness alone. 

The second feature is based on the observation that ash typically has a more 

prominent grain pattern than birch. It is reasonable to assume that we can 

obtain a measure of this feature from the magnitude and frequency of occurrence 

of light-to-dark transitions in the picture. 

 

The feature extractor has thus reduced each picture to a point or a feature 

vector X in a two dimensional space, where, 

X = [X1, X2]T 

where X1 denotes the brightness, X2 denotes the grain prominence. 

Our problem now is to partition the feature space into two regions for 

birth and ash. Suppose that we measure the feature vectors for our training data 

samples and obtain the following scatter diagram. 

 

This plot suggests the rule for classifying the data: Classify the lumber as ash if 

its feature vector falls above the line AB, and as birch otherwise. 
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Figure: Scatter diagram for the feature vector. 

 

In order to make sure that this rule performs well, we obtain more samples and 

adjust the position of line AB in order to minimize the probability of error. 

This suggests that pattern recognition problems has a statistical nature. 

We also see from above example that pattern recognition involves transducer, feature 

extractor and classifier.  

In this course we will focus on introducing different types of classifiers. 

 

 

3:2:1 Concepts in pattern recognition 

3:2:1:1 Nonparametric: Nonparametric techniques do not rely on a set of 

parameters/weights. 

 

3:2:1:2 Parametric: These models are parameterized, with its parameters/weights to be 

determined through some parameter optimization algorithm, which are then determined by 

fitting the model to the training data set. 

 

3:2:1:3 Supervised: The training samples are given as some input/output pairs. The 

output is the desired response for the input. The parameters/weights are 

adjusted so as to minimize the errors between the response of the networks 

and the desired response. 

3:2:1:4 Unsupervised: Suppose that we are given data samples without being told which 

w
w
w
.m

as
om

om
si
ng

i.c
om



| 27  
 

classes they belong to. There are schemes that are aimed to discover significant 

patterns in the input data without a teacher (labelled data samples). 

The nearest neighbor classifiers 

The nearest neighbor rule 

A set of n pairs (x1, t1),..., (xn, tn) is given, where xi takes real values and 

ti takes values in the set {1, ..., M}. Each xi is the outcome 

of the set of measurements made upon the ith individual. Each ti is the index of 

the category to which the ith sample belongs.  

For brevity we say: 

xi belongs to category ti 

A set of measurements is made upon a new individual as x, and we wish to 

assign x a label in {1, ..., M}. Let xk b e the sample nearest to x, then the 

nearest neighbor rule is to assign x the label associated to xk.  

min{d(x, xi)} = d(x, xk),i = 1, ..., n 

 A commonly used distance measure is the sum of squares.  

Suppose x = [x1, x2]T and 

 xk =d(x, xk) = (x1 - xk1)2 + (x2 - xk2)2 
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Table: There are three classes each having 10 known samples. Three new samples 

A,B and C are presented unlabelled. The algorithm can output the class label, for 

each new sample, as the label of its nearest neighbor. The results are generated 

by nn.m. 

 

Example 1: In order to select the best candidates, an over-subscribed 

secondary school sets an entrance exam on two subjects of English and 

Mathematics. Suppose that we know the marks and the classification results of 5 

applicants as in the Table below. If an applicant has been accepted, this is 

denoted as class 1, otherwise class 2. Use the nearest neighbor rule to 

determine if Andy should be accepted if his marks of English and Mathematics are 

70 and 70 respectively. 
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Candidate No. English Math Class 

1 80 85 1 

2 70 60 2 

3 50 70 2 

4 90 70 1 

5 85 75 1
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Solution: 

1. Calculate the distance between Andy’s marks and those of 5 applicants. 

d1 = (70 - 80)2 + (70 - 85)2 = 225 

d2 = (70 - 70)2 + (70 - 60)2 = 100 

d3 = (70 - 50)2 + (70 - 70)2 = 400 

d4 = (70 - 90)2 + (70 - 70)2 = 400 

d5 = (70 - 85)2 + (70 - 75)2 = 150 

2. Find out the minimum value amongst  

{d1,d2 , d3 , d4 , d5}, which is d2 = 100. 

3. Look for the value of the Class for the No.2 applicant, which is 2. Hence the 

applicant is determined as not acceptable by the algorithm. 

The k nearest neighbor rule (k-nn) 

An obvious extension of the nearest neighbor rule is the k nearest neighbor 

rule. This rule classifies the new sample x by assigning it the label most 

frequently represented among the k nearest samples. 

We will restrict our discussion on the case of two classes. 

A decision is made by examining the labels on the k nearest neighbors and taking a 

vote (k is odd to avoid ties). 

Using the same example, we can determine if Andy should be accepted with k 

nearest neighbor rule, with k = 3. 

1.Calculate the distance between Andy’s marks and those of 5 applicants.  

d1 = 125, d2 = 100, d3 = 400, d4 = 400 and d5 = 150. 

2. Find out the 3 smallest values amongst 

 {d1,d2 , d3 , d4 , d5}, which is d1, d2, d5. 

3. Look for the values of the Class labels for No.1, No. 2 and No.3 
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applicants, which are {1,2,1}. 

4. There are more ones in the set of {1,2,1}, so the applicant is 

determined as acceptable by the 3 - nn algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table: There are two classes each having 10 two known samples. Three new 

samples A,B and C are presented unlabelled. The algorithm can output the class 

label, for each new sample, as the label of the most represented 3 

nearest neighbors. The results are generated by knn.m. 

 

Linear discriminant analysis 
Linear discriminant function 

There are many different ways to represent a two class pattern classifier. 

One way is in terms of a discriminant function g(x). 
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+1 

x g 

-1 

For a new sample x and a given discriminant function, we can decide on x 

belongs to Class 1 if g(x) > 0, otherwise it’s Class 2. 

 

A discriminant function that is a linear combination of the components of x can 

be written as 

g(x) = wT x + w0 

where w is called the weight vector and w0 the threshold weight. 

The equation g(x) = 0 defines the decision surface that separates data 

samples assigned to Class 1 from data samples assigned to Class 2. This is a 

hyperplane when g(x) is linear. 

 

Two vectors a and b are normal to each other if aT b = 0. In Figure below we 

see [3, 4] and [-4, 3] are normal to each other, in algebraic 

terms, [3, 4][-4, 3]T = 3 × (-4) + 4 × 3 = 0 
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If two points x1, x2 are both on the decision surface, then 

g(x1) = g(x2) = 0 

wT x1 + w0 = wT x2 + w0 = 0 

wT (x1 - x2) = 0 

This means that w is normal to any vector lying in the hyperplane  ( (x1 − x2) is a vector lying on the the 

decision surface as it starts from x2, ends at x1). 

 

 

 

x 

 

g>0 
xp 

              g=0 

g<0
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Write 

 

 

 

 

= 
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Example 1: In order to select the best candidates, an over-subscribed 

secondary school sets an entrance exam on two subjects of English and 

Mathematics. The marks of 5 applicants as listed in the Table below 

and the decision for acceptance is passing an average mark of 75. 

 

(i) Show that the decision rule is equivalent of the method of linear discriminant 

function. 

(ii) Plot the decision hyperplane, indicating the half planes of both Accept 

and Reject, and location of the 5 applicants. 
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Candidate No. English Math Decision 

1 80 85 Accept 

2 70 60 Reject 

3 50 70 Reject 

4 90 70 Accept 

5 85 75 Accept 

Solution: (i) Denote marks of English and Mathas x1 and x2, respectively. The decision 

rule is if > 75, accept, otherwise reject.  

 

This is equivalent to using a linear discriminant function 

g(x) = x1 + x2 - 150 

with decision rule: if g(x) > 0, accept, otherwise reject. 

 

(ii) To plot g(x) = 0, the easiest way is to set x1 = 0, find the value of x2 so that 

g(x) = 0. 

i.e. 0 = 0 + x2 - 150 , so x2 = 150. 

 

[0, 150]T is on the hyperplane. 

 

Likewise we can also set x2 = 0, find the value of x1 so that g(x) = 0. i.e. 0 = x1 

+ 0 - 150, 

so x1 = 150. 

[150, 0]T is on the hyperplane.  

Plot a straight line linking [0, 150]T and [150, 0]T . 

 x1+x2 

2 
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g(x)<0 Reject  

 

g(x)>0 Accept 
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Figure: The solution to the example 1 (ii). 

There are many ways of determining the linear discriminant 

function g(x) given a set of training data samples. One way is 

to set the labelled data samples some target values. e.g. +1 for one 

class and -1 for another class, then 

the weights of the linear discriminant function are adjusted. 

 

Using the same example, a set of linear equations can be 

constructed based on values in the previous Table. 

 

 

 

 

 

 

 

 

There are 5 equations to solve 3 unknown parameters. There is no 

exact solution. Instead, the weights are determined by minimizing 

the overall errors between both sides. 

The solution to this problem is often based on the least squares estimate, given by 
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PART IV Artificial Neural Networks 
4:1 Introduction 
In this section of the course we are going to consider neural networks. More correctly, we should 

call them Artificial Neural Networks (ANN) as we not building neural networks from animal 

tissue. Rather, we are simulating, on a computer, what we understand about neural networks in 

the brain.  

 

We start this section of the course by looking at a brief history of the work done in the field of 

neural networks. Next we look at how a real brain operates (or as much as we know about how a 

real brain operates). This will provide us with a model we can use in implementing a neural 

network. 

 

Following this we will look at how we can solve simple algebraic problems using a neural 

network. In doing so we will discover the limitations of such a model. 

4:2 Research History 
McCulloch & Pitts (McCulloch, 1943) are generally recognised as being the designers of the first 

neural network. They recognised that combining many simple processing units together could 

lead to an overall increase in computational power. Many of the ideas they suggested are still in 

use today. For example, the idea that a neuron has a threshold level and once that level is 

reached the neuron fires is still the fundamental way in which artificial neural networks operate. 

 

The McCulloch and Pitts network had a fixed set of weights and it was Hebb (Hebb, 1949) who 

developed the first learning rule. His premise was that if two neurons were active at the same 

time then the strength between them should be increased. 

 

In the fifties and throughout the sixties many researchers worked on the perceptron (Block, 

1962, Minsky & Papert, 1988 (originally published in 1969) and Rosenblatt, 1958, 1959 and 

1962). This neural network model can be proved to converge to the correct weights, if there are 

weights that will solve the problem. The learning algorithm (i.e. weight adjustment) used in the 

perceptron is more powerful than the learning rules used by Hebb. 
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The perceptron caused great excitement at the time as it was thought it was the path to 

producing programs that could think. But in 1969 (Minsky & Papert, 1969) it was shown that the 

perceptron had severe limitations which meant that it could not learn certain types of functions 

(i.e. those which are not linearly separable). 

 

Due to Minsky and Papert’s proof that the perceptron could not learn certain type of (important) 

functions, research into neural networks went into decline throughout the 1970’s. 

 

It was not until the mid 1980’s that two people (Parker, 1985) and (LeCun, 1986) independently 

discovered a learning algorithm for multi-layer networks called backpropogation that could solve 

problems that were not linearly separable. In fact, the process had been discovered in (Werbos, 

1974) and was similar to another algorithm presented by (Bryson & Ho, 1969) but it took until 

the mid 1980's to make the link to neural networks. 

 

4:3 The Brain 
We still do not know exactly how the brain works. For example, we are born with about 100 

billion neurons in our brain. Many die as we progress through life, and are not replaced, yet we 

continue to learn. 

 

Although we do not know exactly how the brain works, we do know certain things about it. We 

know it is resilient to a certain amount of damage (in addition to the continual loss we suffer as 

we get older). There have been reports of objects being passed (if passed is the right word) all 

the way through the brain with only slight impairment to the persons mental capability. We also 

know what certain parts of the brain do. We know, for example, that much information 

processing goes on in the cerebral cortex, which is the outer layer of the brain. 

 

From a computational point of view we also know that the fundamental processing unit of the 

brain is a neuron. A neuron consists of a cell body, or soma, that contains a nucleus. Each 

neuron has a number of dendrites which receive connections from other neurons. Neurons also 

have an axon which goes out from the neuron and eventually splits into a number of strands to 

make a connection to other neurons. The point at which neurons join other neurons is called a 

synapse. A neuron may connect to as many as 100,000 other neurons. 
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A simplified view of a neuron is shown in the diagram below. 

 

 

 

Signals move from neuron to neuron via electrochemical reactions. The synapses release a 

chemical transmitter which enters the dendrite. This raises or lowers the electrical potential of 

the cell body. The soma sums the inputs it receives and once a threshold level is reached an 

electrical impulse is sent down the axon (often known as firing). These impulses eventually reach 

synapses and the cycle continues. 

 

Synapses which raise the potential within a cell body are called excitatory. Synapses which lower 

the potential are called inhibitory. It has been found that synapses exhibit plasticity. This 

means that long-term changes in the strengths of the connections can be formed depending on 

the firing patterns of other neurons. This is thought to be the basis for learning in our brains. 

4:5 The First Artificial Neuron 
Much of this section is taken from (Fausett, 1994). 

As mentioned in the research history McCulloch and Pitts (1943) produced the first neural 

network, which was based on their artificial neuron. Although this work was developed in the 

early forties, many of the principles can still be seen in the neural networks of today. 

 

We can make the following statements about a McCulloch-Pitts network 
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• The activation of a neuron is binary. That is, the neuron either fires (activation of one) or 

does not fire (activation of zero). 

For the network shown below the activation function for unit Y is  

 

f(y_in) = 1, if y_in >= θ else 0 

where y_in is the total input signal received 

θ is the threshold for Y. 

• Neurons is a McCulloch-Pitts network are connected by directed, weighted paths. 

• If the weight on a path is positive the path is excitatory, otherwise it is inhibitory. 

• All excitatory connections into a particular neuron have the same weight, although different 

weighted connections can be input to different neurons. 

• Each neuron has a fixed threshold. If the net input into the neuron is greater than the 

threshold, the neuron fires. 

• The threshold is set such that any non-zero inhibitory input will prevent the neuron from 

firing. 

• It takes one time step for a signal to pass over one connection. 
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A sample McCulloch-Pitts network is shown above and some of the statements can be observed. 

In particular, note that the threshold for Y was equal 4 as this is the only value that allows it to 

fire, taking into account that a neuron cannot fire if it receives a nonzero inhibitory input. 

 

Using the McCulloch-Pitts model we can model logic functions. Below we show and describe 

the architecture for four logic functions (the truth tables for each function is also shown) 
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   OR  AN

D 
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T 
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X1 X2 Y  X1 X2 Y X1 X2 Y X1 X2 Y

1 1 1  1 1 1 1 1 0 1 1 0

1 0 0  1 0 1 1 0 1 1 0 1

0 1 0  0 1 1 0 1 0 0 1 1

AND Function 

1 

1 X1 

X2 

Y 

OR Function 

2

2X1
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Y

AND NOT Function 

-1 
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Y 
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0 0 0  0 0 0 0 0 0 0 0 0

 

AND Function 

As both inputs (X1 and X2) are connected to the same neuron the connections must be the same, 

in this case 1. To model the AND function the threshold on Y is set to 2. 

 

OR Function 

This is almost identical to the AND function except the connections are set to 2 and the 

threshold on Y is also set to 2. 

 

AND NOT Function 

Although the truth table for the AND NOT function is shown above it deserves just a small 

explanation as it is not often seen in the textbooks. The function is not symmetric in that an 

input of 1,0 is treated differently to an input of 0,1. As you can see from the truth table the only 

time true (value of one) is returned is when the first input is true and the second input is false. 

Again, the threshold on Y is set to 2 and if you apply each of the inputs to the AND NOT 

network you will find that we have modeled X1 AND NOT X2. 

 

XOR Function 

XOR can be modeled using AND NOT and OR; 

 

X1 XOR X2 = (X1 AND NOT X2) OR (X2 AND NOT X1) 

 

(To prove it draw the truth table) 

This explains the network shown above. The first layer performs the two AND NOT’s and the 

second layer performs the OR. Both Z neurons and the Y neuron have a threshold of 2. 

 

As a final example of a McCulloch-Pitts network we will consider how to model the 

phenomenon that if you touch something very cold you initially perceive heat. Only after you 

have left your hand on the cold source for a while do you perceive cold. This example (from 

Fausett, 1994) is an elaboration of one originally presented by (McCulloch and Pitts, 1943). To 

model this we will assume that time is discrete. If cold is applied for one time step then heat will 
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be perceived. If a cold stimulus is applied for two time steps then cold will be perceived. If heat 

is applied then we should perceive heat. 

 

Take a look at this figure. Each neuron has a threshold of 2. This, as we shall see, allows us to 

model this phenomenon.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First though, remember that time is discrete, so it takes time for the stimulus (applied at X1 and 

X2) to make its way to Y1 and Y2 where we perceive either heat or cold. 

Therefore, at t(0), we apply a stimulus to X1 and X2. 

At t(1) we can update Z1, Z2 and Y1. 

At t(2) we can perceive a stimulus at Y2. 

At t(2+n) the network is fully functional. 

 

Before we see if the network performs as we hope let’s consider what we are trying to do. 

 

Input to the system will be (1,0) or (0,1), which represents hot and cold respectively. 

We want the system to perceive cold if a cold stimulus is applied for two time steps. That is 

 

 Y2(t) = X2(t – 2) AND X2(t – 1) (1) 

 

X1 

X2 
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Y2 
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This truth table (i.e. the truth table for AND) shows that this model is correct 

 

 

X2(t –

2) 

X2( t –

1) 

Y2(t)

1 1 1

1 0 0

0 1 0

0 0 0

 

 

We want the system to perceive heat if either a hot stimulus is applied or a cold stimulus is 

applied (for one time step) and then removed. We can express this as follows 

 

 Y1(t) = [ X1(t – 1) ] OR [ X2(t – 3) AND NOT X2(t – 2) ] (2) 

 

This truth table shows that it gives us the required result 

 

 

 

 

 

 

X2(t –

3) 

X2(t –

2) 

AND 

NOT 

X1(t –

1) 

OR

1 1 0 1 1

1 0 1 1 1

0 1 0 1 1

0 0 0 1 1

1 1 0 0 0

1 0 1 0 1

0 1 0 0 0

0 0 0 0 0

 

Whether 
heat is

If heat is applied at t – 1 
then we perceive heat

If cold is applied, then 
removed we perceive

w
w
w
.m

as
om

om
si
ng

i.c
om



| 48  
 

So, if we are convinced that we have the correct logical statements to represent the hot/cold 

problem, we now need to convince ourselves that the network above represents the logical 

statements. 

 

The figure of the network shows that 

 

 Y1(t) = X1(t – 1) OR Z1(t – 1) (3) 

 

(compare this to the OR network we developed earlier). 

 

Now consider the Z1 neuron. This is how it is formed 

 

 Z1(t – 1) = Z2( t – 2) AND NOT X2(t – 2) (4) 

 

(again, compare this to the AND NOT network above). 

 

Now Z2, this is simply 

 

 Z2(t – 2) = X2(t – 3) (5) 

 

If we take formula (3), and substitute in formula (4) and (5) we end up with 

 

 Y1(t) = [ X1(t – 1) ] OR [ X2(t – 3) AND NOT X2(t – 2) ] (6) 

 

which is the same as formula (2), showing that our network (Y1 anyway) works correctly (as we 

have proved formula 2 works using a full analysis by using the truth table). 

 

We can perform a similar analysis for Y2, and show that Y2 in the network acts in the way we 

developed above (formula (1)). You should do this to convince yourself that this is correct. 

 

If you still don’t believe it, there is a spreadsheet available from the course web site that 

implements this network so that you can see that it works as we expect. 
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4:6 Modelling a Neuron 
To model the brain we need to model a neuron. Each neuron performs a simple computation. It 

receives signals from its input links and it uses these values to compute the activation level (or 

output) for the neuron. This value is passed to other neurons via its output links. 

 

The input value received of a neuron is calculated by summing the weighted input values from 

its input links. That is 

 

 

An activation function takes the neuron input value and produces a value which becomes the 

output value of the neuron. This value is passed to other neurons in the network. 

 

This is summarised in this diagram and the notes below. 

 

 

 

 

aj : Activation value of unit j 

wj,i : Weight on the link from unit j to unit i 

ini : Weighted sum of inputs to unit i 

ai : Activation value of unit i (also known as the output value) 

g : Activation function 

 

Or, in English. 
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A neuron is connected to other neurons via its input and output links. Each incoming neuron 

has an activation value and each connection has a weight associated with it. 

The neuron sums the incoming weighted values and this value is input to an activation function. 

The output of the activation function is the output from the neuron. 

 

Some common activation functions are shown below. 

 

 

 

These functions can be defined as follows. 

 

Stept(x) = 1 if x >= t, else 0 

Sign(x) = +1 if x >= 0, else –1 

Sigmoid(x) = 1/(1+e-x) 

 

On occasions an identify function is also used (i.e. where the input to the neuron becomes the 

output). This function is normally used in the input layer where the inputs to the neural network 

are passed into the network unchanged. 

 

4:7 Some Simple Networks 
We can use what we have learnt above to demonstrate a simple neural network which acts as a 

logic gate. 

The diagram below is modelling the following truth tables 
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  AN
D 

    O
R 

    NO
T 

 

Input 
1 

 0 0 1 1  0 0 1 1  0 1 

Input 
2 

 0 1 0 1  0 1 0 1    

Outpu
t 

 0 0 0 1  0 1 1 1  1 0 

 

 

 

 

In these networks we are using the step activation function. 

You should convince yourself that these networks produce the correct output for all the allowed 

inputs. 

 

You will notice that each neuron has a different threshold. From a computational viewpoint it 

would be easier if all the neurons had the same threshold value and the actual threshold was 

somehow modelled by the weights. 

 

In fact, it is possible to do exactly this. Consider this network 

 

 

 

 
t = 0.0
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It is the same as the AND network in the diagram above except that there is an extra input 

neuron whose activation is always set to –1. The threshold of the neuron is represented by the 

weight that links this extra neuron to the output neuron. 

This means the threshold of the neuron can be set to zero. 

 

You might like to work through this network using the four possible combinations of x and y 

and convince yourself that the network operates correctly. 

 

This advantage of this method is that we can always set the threshold for every neuron to zero 

and from a computational point of view, when “training” the network, we only have to update 

weights and not both thresholds and weights.  

 

4:8 Types of Network 
The simple networks we have considered above only have input neurons and output neurons. It 

is considered a one layer network (the input neurons are not normally considered to form a layer 

as they are just a means of getting data into the network). 

Also, in the networks we have considered, the data only travels in one direction (from the input 

neurons to the output neurons). In this respect it is known as a feed-forward network. 

Therefore, we have been looking at one-layer, feed-forward networks. 

There are many other types of network. An example of a two-layer, feed-forward network is 

shown below.  

 

 

 

 

 

w
w
w
.m

as
om

om
si
ng

i.c
om



| 53  
 

The Perceptron 

The name perceptron is now used as a synonym for single-layer, feed-forward networks. They 

were first studied in the 1950’s and although other network architectures were known about the 

perceptron was the only network that was known to be capable of learning and thus most of the 

research at that time concentrated on perceptrons. 

 

The diagram below shows example of perceptrons. 

 

 

 

You will see, in the left hand network that a single weight only affects one of the outputs. This 

means we can make our study of perceptrons easier by only considering networks with a single 

output (i.e. similar to the  network shown on the right hand side of the diagram). 

 

As we only have one output we can make our notation a little simpler. Therefore the output 

neuron is denoted by O and the weight from input neuron j is denoted by Wj. 

Therefore, the activation function becomes 
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(Note, we are assuming the use of additional weight to act as a threshold so that we can use a 

step0 function, rather than stept). 

 

What can perceptrons represent? 

We have already seen that perceptrons can represent the AND, OR and NOT logic functions. 

But does it follow that a perceptron (a single-layer, feed-forward network) can represent any 

boolean function? 

Unfortunately, this is not the case. 

 

To see why, consider these two truth tables 

 

  AN

D 

   XO

R 

Input 

1 

 0 0 1 1  0 0 1 1

Input 

2 

 0 1 0 1  0 1 0 1

Outpu

t 

 0 0 0 1  0 1 1 0

 

 

 

We can represent these two truth tables graphically. Like this 
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(where a filled circle represents an output of one and a hollow circle represents an output of 

zero). 

 

If you look at the AND graph you will see that we can divide the one’s from the zero’s with a 

line. This is not possible with XOR. Functions such as AND are called linearly separable. 

 

It was the proof by Minsky & Papert in 1969 that perceptrons could only learn linearly separable 

functions that led to decline in neural network research until the mid 1980’s when it was proved 

that other network architectures could learn these type of functions. 

 

Although, only being able to learn linearly separable functions is a major disadvantage of the 

perceptron it is still worth studying as it is relatively simple and can help provide a framework for 

other architectures. 

It should however, be realised that perceptrons are not only limited to two inputs (e.g. the AND 

function). We can have n inputs which gives us an n-dimension problem. 

When n=3 we can still visualise the linear separability of the problem (see diagram below). 
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But once n is greater than three we find it difficult to visualise the problem. 

 

4:9 Learning Linearly Separable Functions 
With a function such as AND (with only two inputs) we can easily decide what weights to use to 

give us the required output from the neuron. But with more complex functions (i.e. those with 

more than two inputs it may not be so easy to decide on the correct weights). 

Therefore, we would like our neural network to “learn” so that it can come up with its own set 

of weights. 

 

We will consider this aspect of neural networks for a simple function (i.e. one with two inputs). 

We could obviously scale up the problem to accommodate more complex problems, providing 

the problems are linearly separable. 

 

Consider this truth table (AND) and the neuron that we hope will represent it. 

 

  AN   
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D 

Input 

1 

 0 0 1 1 

Input 

2 

 0 1 0 1 

Outpu

t 

 0 0 0 1 

 

 

 

 

 

 

 

 

 

 

 

In fact, all we have done is set the weights to random values between –0.5 and 0.5 

 

By applying the activation function for each of the four possible inputs to this neuron it actually 

gives us the following truth table 

 

  ???   

Input 

1 

 0 0 1 1 

Input 

2 

 0 1 0 1 

Outpu

t 

 0 0 1 0 

 

Which can be graphically represented as follows 
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The network, obviously, does not represent the AND function so we need to adjust the weights 

so that it “learns” the function correctly. 

 

The algorithm to do this follows, but first some terminology. 

 

Epoch : An epoch is the presentation of the entire training set to the neural 

network. In the case of the AND function an epoch consists of four 

sets of inputs being presented to the network (i.e. [0,0], [0,1], [1,0], 

[1,1]). 

Training Value,  T : When we are training a network we not only present it with the input 

but also with a value that we require the network to produce. For 

example, if we present the network with [1,1] for the AND function 

the training value will be 1. 

Error, Err : The error value is the amount by which the value output by the 

network differs from the training value. For example, if we required 

the network to output 0 and it output a 1, then Err = -1. 

Output from Neuron, O : The output value from the neuron 

Ij : Inputs being presented to the neuron 

Wj : Weight from input neuron (Ij) to the output neuron 

LR : The learning rate. This dictates how quickly the network converges. It 

is set by a matter of experimentation. It is typically 0.1. 

 

 

The Perceptron Training Algorithm 

While epoch produces an error 

Present network with next inputs from epoch  

Err = T – O 

If Err <> 0 then 

Note : If the error is positive we need to increase O. If the error is negative we need to decrease 

O. Each input contributes WjIj to the total input so if Ij is positive, an increase in Wj 

will increase O. If Ij is negative an increase in Wj will decrease O). 

This can be achieved with the following 

Wj = Wj + LR * Ij * Err 

w
w
w
.m

as
om

om
si
ng

i.c
om



| 59  
 

Note : This is often called the delta learning rule. 

End If 

End While 

 

Perceptron Learning – An Example 

Let’s take a look at an example. The initial weight values are 0.3, 0.5, and -0.4 (taken from the 

above example) and we are trying to learn the AND function. 

 

If we present the network with the first training pair ([0,0]), from the first epoch, nothing will 

happen to the weights (due to multiplying by zero). 

The next training pair ([0,1]) will result in the network producing zero (by virtue of the step0 

function). As zero is the required output there is no error so training continues. 

The next training pair ([1,0]) produces an output of one. The required output is 0. Therefore the 

error is –1. This means we have to adjust the weights. 

 

This is done as follows (assuming LR = 0.1) 

 

W0 = 0.3 + 0.1 * -1 * -1 = 0.4 

W1 = 0.5 + 0.1 * 1 * -1 = 0.4 

W2 = -0.4 + 0.1 * 0 * -1 = -.04 

 

Therefore, the new weights are 0.4, 0.4, -0.4. 

 

Finally we apply the input [1,1] to the network. This also produces an error and the new weight 

values will be 0.3, 0.5 and –0.3. 

 

As this presentation of the epoch produced an error (two in fact) we need to continue the 

training and present the network with another epoch. 

 

Training continues until an epoch is presented that does not produce an error. 

 

If we consider the state of the network at the and of the first epoch (weights = 0.3, 0.5, -0.3) we 

know the weights are wrong as the epoch produced an error (in fact, the weights may be correct 
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at the end of the epoch but we need to present another epoch to show this). We can also 

produce a graph that shows the current state of the network. 

 

We are trying to achieve the AND function which can be represented as follows 

 

 

 

 

 

 

 

 

 

The current “linear separability” line can be drawn by using the weights to draw a line on the 

graph. Two points on the I1 and I2 axis can be found as follows 

 

I1 point = W0/W1 

I2 point = W0/W2 

 

Note : As discussed above, W0 actually represents the threshold. Therefore, we are dividing the 

threshold by the weights. 

 

That is, I1 = 0.6 and I2 = -1 

 

This line is shown (roughly in the right position) on the above graph. It is clearly not in the correct 

place as the line does not divide the one’s and the zero’s correctly. 

 

If we continue with the training until we get no errors from an entire epoch the weights would 

be 0.4, 0.4, 0.1. If we plot these weights on the graph we get (again the line is roughly in the 

correct position). 
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And we can see that the linearly separability lies is in a valid position and this can be confirmed 

by checking that the neural network is producing the correct outputs. You might like to do this 

for weights of 0.4, 0.4 and 0.1. 

 

Unless I plan to set some coursework that involves you building a neural network, a spreadsheet 

available via the course web site will show you how we can implement a perceptron using a 

spreadsheet. This will allow you to experiment with it (for example, showing that an XOR type 

problem can never be learnt). 
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